1、分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。
2、设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu;一般来说,u,v选取的原则是:积分容易者选为v,求导简单者选为u。例如:∫inx dx中应设u=inx,v=x。